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1 - Introduction

The Mean-Variance Revolution - Modern Portfolio Theory, pioneered
by Markowitz [9], Sharpe and Lintner, has produced a considerable impact
on both financial theory and practice. Its tenets permeate the field of
financial economics and form the foundation of the investment
decision-making process.

Limitations:

extreme sensitivity to parameter estimate;

it is a one period model.
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The Merton Evolution - The natural next step is to construct a
multiperiod model.

Merton [10] formulates the investment problem as a stochastic control
problem where the objective is to maximize the investor’s utility. This
model constitutes one of the few nonlinear stochastic control problem with
an analytical solution.

Limitations:

high degree of mathematical stylization;

“curse of dimensionality”.
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(Fractional) Kelly Criterion Investing - Kelly criterion holds a special
place in investment theory and practice: Ziemba [12] demonstrated that
several great investors (Keynes, Buffett...) are Kelly criterion investors.

To address the riskiness of Kelly investing, Ziemba proposes fractional
Kelly strategies: invest a proportion of the wealth in the Kelly portfolio
and the remainder in the short-term rate.

Limitations:

Kelly criterion investing is not for the faint-hearted;

Fractional Kelly is not generally optimal (notable exception: asset
prices are lognormally distributed);
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Ideally, we would like to find an approach which combines

the insights of Mean-Variance optimization;

the continuous time approach of stochastic control;

the intuition of fractional Kelly.
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... and which would also be

consistent with utility maximization;

less susceptible to fall victim of the “curse of dimensionality”.

As we will see shortly, the risk-sensitive asset management model meets
these requirements.

7



2 - What is Risk-Sensitive Control?

A First Definition - Risk-sensitive control is most simply defined as

a generalization of classical stochastic control;

in which the degree of risk aversion or risk tolerance of the optimizing
agent is explicitly parameterized in the objective criterion and
influences directly the outcome of the optimization.
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The Risk-Sensitive Criterion - In risk-sensitive control, the decision
maker’s objective is to select a control policy h(t) to maximize the criterion

J(t, x , h; θ) := −1

θ
ln E

[
e−θF (t,x ,h)

]
(1)

where

t and x are the time and the state variable;

F is a given reward function;

the risk sensitivity θ ∈]− 1, 0[∪]0,∞) represents the decision maker’s
degree of risk aversion.
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A Taylor expansion of the previous expression around θ = 0 evidences the
vital role played by the risk sensitivity parameter:

J(x , t, h; θ) = E [F (t, x , h)]− θ

2
Var [F (t, x , h)] + O(θ2) (2)

θ → 0, “risk-null”: corresponds to classical stochastic control;

θ < 0: “risk-seeking” case corresponding to a maximization of the
expectation of a convex decreasing function of F (t, x , h);

θ > 0: “risk-averse” case corresponding to a minimization of the
expectation of a convex increasing function of F (t, x , h).
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Therefore, risk-sensitive control differs from traditional stochastic control
in that it explicitly models the risk-aversion of the decision maker as an
integral part of the control framework, rather than importing it in the
problem via an externally defined utility function.
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3 - Asset Management Applications and Implications

Bielecki and Pliska [2] pioneered the application of risk-sensitive control
to asset management.

They proposed that the reward function be defined as the logarithm of the
investor’s wealth V , i.e.

F (t, x , h) = ln V (t, x , h)

Interpretation: the investor’s objective is to maximize the risk-sensitive
(log) return of the his/her portfolio.
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Risk-Sensitive Asset Management and utility maximization - with
this choice of reward function, we can express the control criterion as

J(t, x , h; θ) := −1

θ
ln E

[
e−θ ln V (t,x ,h)

]
(3)

Now, the expectation

E
[
e−θ ln V (t,x ,h)

]
= E

[
V (t, x , h)−θ

]
=: Uθ(Vt) (4)

can be interpreted as the expected utility of time t wealth under the power
utility (HARA) function.
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Risk-Sensitive Asset Management, Mean-Variance Analysis and
Kelly criterion - the Taylor expansion becomes

J(t, x ; θ) = E [ln V (t, x , h)]− θ

2
Var [ln V (t, x , h)] + O(θ2) (5)

Ignoring higher order terms, we recover the mean-variance optimization
criterion...

... and the Kelly criterion portfolio in the limit as θ → 0.
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4 - The Diffusion Risk-Sensitive Asset Management

The Diffusion Model - Embedding the investor’s risk-sensitivity in the
control criterion gives us more leeway in the specification of the asset
market than would be obtained in the Merton approach.

In particular, Bielecki and Pliska [2] propose a factor model in which the
prices of the risky assets follow a SDE of the form

dSi (t)

Si (t)
= (a + AX (t))idt +

n+m∑
k=1

σikdWk(t)

Si (0) = si , i = 1, . . . ,m (6)

where W (t) is a (n + m)-dimensional Brownian motion.
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We also consider a short-term rate process satisfying

dS0(t)

S0(t)
=
(
a0 + A′0X (t)

)
dt, S0(0) = s0 (7)

The asset prices drift depends on n valuation factors modelled as affine
processes with constant diffusion

dX (t) = (b + BX (t))dt + ΛdW (t), X (0) = x (8)

These factors must be specified, but they could include macroeconomic,
microeconomic or statistical variables.
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We make only two minor assumptions:

Assumption

ΛΛ′ > 0

ΣΣ′ > 0
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Under these conditions, the logarithm of the investor’s wealth is given by
the SDE

ln V (t) = ln v +

∫ t

0

(
a0 + A′0X (s)

)
+ h(s)′

(
â + ÂX (s)

)
ds

−1

2

∫ t

0
h(s)′ΣΣ′h(s)ds +

∫ t

0
h(s)′ΣdW (s), (9)

where V (0) = v , h is the m-dimensional vector of portfolio weights and we
used the notation â := a− a01 and Â := A− 1A′0.

We immediately notice that the equation for V solely depends on the
valuation factors (the state process): it is independent from the asset
prices.
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The next step is due to Kuroda and Nagai [8] who ingeniously observed
that under an appropriately chosen change of measure, the risk-sensitive
criterion can be expressed as

I (v , x ; h; t,T ) = ln v − 1

θ
ln Eθ

[
exp

{
θ

∫ T

t
g(Xs , h(s); θ)ds

}]
(10)

where

g(x , h; θ) =
1

2
(θ + 1) h′ΣΣ′h − a0 − A′0x − h′(â + Âx) (11)

and where the factor dynamics under the new measure Pθh is given by:

dXs =
(
b + BXs − θΛΣ′h(s)

)
ds + ΛdW θ

s (12)
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In this formulation, the problem is a standard Linear
Exponential-of-Quadratic Gaussian (LEQG) control problem which can be
solved exactly (up to the resolution of a system of Riccati equations).
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Special Case: the factors and assets are uncorrelated - In the case
when ΛΣ′ = 0, security risk and factor risk are uncorrelated, the evolution
of Xt under the measure Pθh given in equation (12) can be expressed as:

dXs = (b + BXs) ds + ΛdW θ
s

The evolution of the state is therefore independent of the control variable
h and, as a result, the control problem can be solved through a pointwise
maximisation of the auxiliary criterion function I (v , x ; h; t,T ).
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The optimal control h∗, in this case, is the maximizer of the function
g(x ; h; t,T ) given by

h∗ =
1

θ + 1
(ΣΣ′)−1

(
â + Âx

)
which is a position of 1

θ+1 in the Kelly portfolio.
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Let Φ(t, x) be the value function corresponding to the exponential of
integral criterion I (v , x ; h; t,T ). Substituting the value of h∗ in the
equation for g , we note that

Φ(t, x) = sup
h∈A(T )

I (v , x ; h; t,T )

= −1

θ
ln Eθ

[
exp

{
θ

∫ T−t

0
g(x , h∗(s); t,T ; θ)ds

}
v−θ

]

The PDE for Φ can now be obtained directly via an exponential
transformation and Feynman-Kac.
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In the general case, the value function Φ for the auxiliary criterion
function I (v , x ; h; t,T ), defined as

Φ(t, x) = sup
A(T )

I (v , x ; h; t,T )

satisfies the Hamilton-Jacobi-Bellman Partial Differential Equation (HJB
PDE)

∂Φ

∂t
+ sup

h∈Rm
Lh

t Φ(X (t)) = 0 (13)

where

Lh
t Φ(t, x) =

(
b + Bx − θΛΣ′h(s)

)′
DΦ +

1

2
tr
(
ΛΛ′D2Φ

)
−θ

2
(DΦ)′ΛΛ′DΦ− g(x , h; θ)

and subject to terminal condition Φ(T , x) = ln v .
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Solving the optimization problem, we find that the optimal investment
policy h∗(t) is given by

h∗(t) =
1

θ + 1

(
ΣΣ′

)−1
[
â + ÂX (t)− θΣΛ′DΦ(t,X (t))

]
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The solution of the PDE is of the form

Φ(t, x) = x ′Q(t)x + x ′q(t) + k(t)

where Q(t) solves a n-dimensional matrix Riccati equation and q(t) solves
a n-dimensional linear ordinary differential equation depending on Q.
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Dimensionality - the effective dimension of the risk-sensitive asset
management model is the number of factors rather than the number of
assets.

The limited impact of the number of assets is particularly important since
for practical applications we would typically use only a few factors
(possibly 3 to 5) to parametrize a large cohort of assets and asset classes
(possibly several dozens).

The risk-sensitive asset management model is therefore particularly
efficient from a computational perspective.
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Theorem (Mutual Fund Theorem (Davis and Lleo [6]))

Any portfolio can be expressed as a linear combination of investments into
two “mutual funds” with respective risky asset allocations:

hK (t) = (ΣΣ′)−1
(

â + ÂX (t)
)

hC (t) = −(ΣΣ′)−1ΣΛ′ (q(t) + Q(t)X (t)) (14)

and respective allocation to the money market account given by:

hK
0 (t) = 1− 1′(ΣΣ′)−1

(
â + ÂX (t)

)
hC

0 (t) = 1 + 1′(ΣΣ′)−1ΣΛ′ (q(t) + Q(t)X (t))

Moreover, if an investor has a risk sensitivity θ, then the respective weights
of each mutual fund in the investor’s portfolio are equal to 1

θ+1 and θ
θ+1 .
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The allocation between the two funds is a sole function of the investors’s
risk sensitivity θ.

As θ → 0, the investor’s wealth gets invested in the Kelly criterion
portfolio (portfolio K).

As θ →∞, the investor’s wealth gets invested in portfolio C. The
investment strategy of this portfolio can be interpreted as a large position
in the short-term rate and a set of positions trading on the comovement of
assets and valuation factors.
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Note that when we assume that there are no underlying valuation factors,
the risky securities follow geometric Brownian motions with drift vector µ
and the money market account becomes the risk-free asset (i.e. a0 = r
and A0 = 0).

In this case ΣΛ′ = 0 and we can then easily see that fund C is fully
invested in the risk-free asset.

As a result, we recover Merton’s Mutual Fund Theorem for m risky assets
and a risk-free asset.
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Fractional Kelly Strategies - we now propose to adapt the concept of
fractional Kelly strategy to our factor model and to the findings expressed
in the mutual fund theorem.

Instead of regarding the fractional Kelly strategy as a split between the
Kelly portfolio and the short-term rate, we propose to define it as a split
between the Kelly portfolio and the portfolio C defined in the mutual fund
theorem.

This redefinition has two important consequences

the fractional Kelly portfolios are always optimal portfolios;

in the lognormal case, our adapted definition reverts to the ‘classical’
definition;
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Asset Classes - The risk-sensitive asset management model was
originally set in an environment of equity-like securities exhibiting a
geometric growth.

Bielecki and Pliska [3] sucessfully used an approach due to Rutkowski [11]
to include non-defaultable zero-coupon bonds in the risk-sensitive asset
management model. Rutkowski’s key insight is that by interpreting yields
as underlying factors, one can then model the price of fixed income
securities using the same type of geometric dynamics as used to model
asset prices in the risk-sensitive asset management model.

As a result, Rutkowski’s approach demonstrates that in the risk-sensitive
asset management model, the modelling of the actual securities can be
undertaken separately from the design of the control model.
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5 - Beyond Asset Allocation (Part I): Managing to
Benchmarks and to Liabilities

The risk sensitive asset management model can be extended to take into
account benchmarks and liabilities without losing its elegance, and as
importantly, without increasing the level of complexity of the approach.
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Benchmarked Asset Management - in this case, the investor selects an
asset allocation to outperform a given investment benchmark.

Davis and Lleo [6] propose that the reward function F (t, x ; h) be defined
as the (log) excess return of the investor’s portfolio over the return of the
benchmark, i.e.

F (t, x , h) := ln
V (t, x , h)

L(t, x , h)

where L is the level of the benchmark.

Furthermore, the dynamics of the benchmark is modelled by the SDE:

dL(t)

L(t)
= (c + C ′X (t))dt + ς ′dW (t), L(0) = l (15)
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This formulation is wide enough to encompass a multitude of situations
such as:

the single benchmark case, where the benchmark is, for example, an
equity index such as the S&P500 or the FTSE.

the single benchmark plus alpha, where, for example, a hedge fund has
for benchmark a target based on a short-term interest rate plus alpha.

the composite benchmark case. for example a benchmark constituted
of 5% cash, 35% Citigroup World Government Bond Index, 25% S&P
500 and 35% MSCI EAFE.

the composite benchmark plus alpha, a combination of the previous
two cases.
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By Itô’s lemma, the log of excess return in response to a strategy h is

F (t, x ; h) = ln
v

l
+

∫ t

0
d ln V (s)−

∫ t

0
d ln L(s)

= ln
v

l
+

∫ t

0

(
a0 + A′0X (s) + h(s)′

(
â + ÂX (s)

))
ds

−1

2

∫ t

0
h(s)′ΣΣ′h(s)ds +

∫ t

0
h(s)′ΣdW (s)

−
∫ t

0
(c + C ′X (s))ds +

1

2

∫ t

0
ς ′ςds

−
∫ t

0
ς ′dW (s) (16)

F (0, x ; h) = f0 := ln
v

l
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Following an appropriate change of measure, the criterion function can be
expressed as

I (f0, x ; h; t,T ) = ln f0 −
1

θ
ln Eθ

[
exp

{
θ

∫ T−t

0
g(Xs , h(s); θ)ds

}]
where

g(x , h; θ) =
1

2
(θ + 1) h′ΣΣ′h − a0 − A′0x − h′(â + Âx)

−1

2
θ(h′Σς + ς ′Σ′h) + (c + C ′x) +

1

2
(θ − 1) ς ′ς

Once again, our control problem simplifies into a LEQG problem.
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Let Φ be the value function for the auxiliary criterion function
I (f0, x ; h; t,T ). Then Φ is defined as

Φ(t, x) = sup
A(T−t)

I (v , l , x ; h; t,T )

and it satisfies the HJB PDE

∂Φ

∂t
+ sup

h∈Rm
Lh

t Φ = 0 (17)

where

Lh
t Φ =

(
b + Bx − θΛ(Σ′h − ς)

)′
DΦ +

1

2
tr
(
ΛΛ′D2Φ

)
−θ

2
(DΦ)′ΛΛ′DΦ− g(x , h; θ) (18)
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Solving the optimization problem, we find that the optimal investment
policy h∗(t) is given by

h∗(t) =
1

θ + 1
(ΣΣ′)−1

(
â + Âx − θΣΛ′DΦ + θΣς

)
(19)

The solution of the PDE is still of the form

Φ(t, x) = x ′Q(t)x + x ′q(t) + k(t)

where Q(t) solves a n-dimensional matrix Riccati equation and q(t) solves
a n-dimensional linear ordinary differential equation.
In addition, we have a new mutual fund theorem...
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Theorem (Benchmarked Fund Theorem (Davis and Lleo [6]))

Given a time t and a state vector X (t), any portfolio can be expressed as
a linear combination of investments into two “mutual funds” with
respective risky asset allocations:

hK (t) = (ΣΣ′)−1
(

â + ÂX (t)
)

hC (t) = (ΣΣ′)−1
[
Σς − ΣΛ′ (q(t) + Q(t)X (t))

]
(20)

and respective allocation to the money market account given by:

hK
0 (t) = 1− 1′(ΣΣ′)−1

(
â + ÂX (t)

)
hC

0 (t) = 1− 1′(ΣΣ′)−1
[
Σς − ΣΛ′ (q(t) + Q(t)X (t))

]
Moreover, if an investor has a risk sensitivity θ, then the respective weights
of each mutual fund in the investor’s portfolio are equal to 1

θ+1 and θ
θ+1 .
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Role of θ in the benchmark case - while in the asset only case θ represents
the sensitivity of an investor to total risk, in the benchmark case, θ seems
rather to represent the investor’s sensitivity to active risk.

When θ is low, the investor will take more active risk by investing larger
amounts into the log-utility portfolio.

On the other hand, when θ is high, the investor will divert most of his/her
funds to the correction fund, which is dominated by the term (ΣΣ′)−1Σς,
a term designed to track the index.

Hence, in the benchmark case, the investor already takes the benchmark
risk as granted. The main unknown is therefore how much additional risk
the investor is willing to take in order to outperform the benchmark.
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Asset and Liability Management - Davis and Lleo [5] propose a model
in which the investor’s position is funded by a liability whose dynamics
follows the same type of SDE as the benchmark considered in the previous
problem

dL(t)

L(t)
= (c + C ′X (t))dt + ς ′dW (t), L(0) = l (21)
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The objective of the investor is to maximize the risk-sensitive (log)
return-on-equity of the portfolio, where the equity is defined as

E (t) := V (t)− L(t)

with
E (0) = e0 := v − l > 0

To achieve this objective, the investor can

change the allocation of the asset portfolio;

increase of decrease leverage by either paying down a part of the
liability or issuing more liability.
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As a result, we now consider an additional control variable: the leverage
ratio, ρ, that we define as

ρ(t) :=
V (t)

E (t)
(22)

and the dynamics of the equity can be expressed as

dE (t)

E (t)

= (c + C ′X (t))dt

+ρ(t)
[(

a0 + A′0X (t)
)

+ h′(t)
(

â + ÂX (t)
)

−(c + C ′X (t))
]

dt +
[
ρ(t)(h′(t)Σ− ς ′) + ς ′

]
dW (t),

E (0) = e0 (23)
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Although the control problem is now more complicated, it can still be
solved analytically using the same technique as the asset-only case and the
benchmark case.

In particular, the optimal asset allocation is given by

h∗(t) =
1

ρ∗(t)

1

θ + 1
(ΣΣ′)−1

(
â + Âx − θ

2
ΣΛ′DΦ + (θ + 1)(ρ− 1)Σς

)
(24)

where we note that the investment in the Kelly portfolio has been
‘de-levered’.
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6 - Beyond Asset Allocation (Part II): Jumps!

Our current research concerns the inclusion of credit risk and of a credit
asset class to extend risk-sensitive asset management beyond the realm of
stock-like securities and of non-defaultable bonds.

This aim has motivated an extension of the modelling framework beyond
diffusion processes and into jump-diffusion processes.
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Asset and Factor Modelling - In a jump diffusion setting, the factor
dynamics and asset prices are respectively given by

dX (t) = (b + BX (t−))dt + ΛdW (t) +

∫
Z
ξ(z)N̄p(dt, dz), X (0) = x

(25)
and

dSi (t)

Si (t−)
= (a + AX (t))idt +

N∑
k=1

σikdWk(t) +

∫
Z
γi (z)N̄p(dt, dz),

Si (0) = si , i = 1, . . . ,m (26)
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For notational convenience, we define a Poisson random measure
N̄p(dt, dz) as

N̄p(dt, dz)

=

{
Np(dt, dz)− ν(dz)dt =: Ñp(dt, dz) if z ∈ Z0

Np(dt, dz) if z ∈ Z\Z0

where the measure ν is the compensator of the Poisson random measure.

The class of Poisson random measures, which we use in our approach,
gives us the flexibility to model a wide range of jump-diffusion
specifications, including the class of Lévy processes (see for example Ikeda
and Watanabe [7]).
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Following our earlier line of reasoning, in the asset-only case the value
function Φ satisfies the integro-differential HJB PDE

∂Φ

∂t
+ sup

h∈J
Lh

t Φ(X (t)) = 0 (27)

where

Lh
t Φ(t, x) =

(
b + Bx − θΛΣ′h(s)

+

∫
Z
ξ(z)

[(
1 + h′γ(z)

)−θ − 1{z∈Z0}

]
ν(dz)

)′
DΦ

+
1

2
tr
(
ΛΛ′D2Φ

)
− θ

2
(DΦ)′ΛΛ′DΦ− g(x , h; θ)

+

∫
Z

{
−1

θ

(
e−θ(Φ(t,x+ξ(z))−Φ(t,x)) − 1

)
− ξ′(z)DΦ

}
ν(dz)

and g is the instantaneous reward function. The terminal condition is
Φ(T , x) = ln v .
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Existence and Uniqueness of the Optimal Control - we start by
developing the supremum:

sup
h∈J

Lh
t Φ

= (b + Bx)′DΦ +
1

2
tr
(
ΛΛ′D2Φ

)
− θ

2
(DΦ)′ΛΛ′DΦ + a0 + A′0x

+

∫
Z

{
−1

θ

(
e−θ(Φ(t,x+ξ(z))−Φ(t,x)) − 1

)
− ξ′(z)DΦ1Z0(z)

}
ν(dz)

+ sup
h∈J

{
−1

2
(θ + 1) h′ΣΣ′h − θh′ΣΛ′DΦ + h′(â + Âx)

−1

θ

∫
Z

{(
1− θξ′(z)DΦ

) [(
1 + h′γ(z)

)−θ − 1
]

+θh′γ(z)1Z0(z)
}
ν(dz)

}
(28)
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Next, notice that the term

−1

2
(θ + 1) h′ΣΣ′h − θh′ΣΛ′DΦ + h′(â + Âx)−

∫
Z

h′γ(z)1Z0(z)ν(dz)

is strictly concave in h ∀z ∈ Z a.s. dν.
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If we assume that the assets and factors do not have simultaneous jumps,
i.e ∀z ∈ Z, γ(z)ξ′(z) = 0, the nonlinear jump-related term

−1

θ

∫
Z

{(
1− θξ′(z)DΦ

) [(
1 + h′γ(z)

)−θ − 1
]}

ν(dz)

simplifies to

−1

θ

∫
Z

{[(
1 + h′γ(z)

)−θ − 1
]}

ν(dz)

which is also concave in h ∀z ∈ Z a.s. dν.

Therefore, the supremum is reached for a unique optimal control h∗, which
is an interior point of the set J, and the supremum, evaluated at h∗, is
finite.
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Special Case: factors as diffusion - if we model the factor dynamics as
diffusion processes and only add jumps to the asset prices, then our
control problem remains, broadly speaking, a diffusion problem.

We conjecture that in this case the HJB equation has a classical C 1,2

solution...

... to be continued!...
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Viscosity Solutions - In the general case, however, we can no longer find
either an analytical solution or even a classical solution.

Nevertheless, a weak-sense solution, specifically a viscosity solution, exists.
The theory of viscosity solutions represents a powerful set of techniques to
solve a wide range of elliptical and parabolic PDEs (see [4] for more
details).

In the risk-sensitive asset management case, we have proved that the value
function Φ is the unique, continuous viscosity solution of the HJB PDE
satisfying appropriate growth condition.
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Numerical implementation - Our interest in viscosity solutions is also
practical.

Indeed, Barles and Souganidis [1]’ ‘stability result’ can be used to prove
convergence of a wide range of numerical schemes to the viscosity solution
of a PDE and therefore establishes a strong connection between the theory
of viscosity solution and numerical analysis.

And, since the effective dimension of our control problem remains equal to
the number of factors rather than assets, we believe that reasonably
practical asset allocation problems can be solved.
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Benchmark and ALM - the benchmarked asset allocation and the ALM
problems can be extended to the jump diffusion in a similar way and with
similar conclusions: the value function Φ is the unique, continuous
viscosity solution of the problem’s HJB PDE.
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Further Research

Currently, our main research question relates to the modelling of credit
securities (defaultable zero-coupon bonds and CDS) for inclusion in the
investment universe.

Modelling credit securities would enable us to solve investment problems
across three asset classes: equity, fixed income and credit products.

... to be continued!...
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To conclude,

Risk-sensitive control

provides a promising setting for a wide range of investment
management problems;

combines the mathematical elegance of the Merton model with the
insights of Mean-Variance optimization and the intuition of fractional
Kelly;

is numerically appealing, since the effective dimensionality is the
number of factors rather than the number of assets;

has closed-formed solutions in the diffusion case and can be solved
numerically in the jump-diffusion case.
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Thank you!

1

Any question?

1Copyright: W. Krawcewicz, University of Alberta
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